Erkennung anormalen Verhaltens


City, University of London untersucht zusammen mit Kindred und BetBuddy die Verwendung künstlicher Intelligenz zur Bekämpfung von Geldwäsche
Die zweite Forschungsphase wird Glücksspieldaten aus der Praxis nutzen, um Anzeichen von Geldwäsche zu erkennen



Die Forscher im Bereich Künstliche Intelligenz der City, University of London haben mit Vertretern der Online-Glücksspielbranche zusammen an einer Studie zur Bekämpfung von Geldwäsche gearbeitet. Im Ergebnis der Zusammenarbeit zwischen dem Forschungszentrum für Maschinelles Lernen der City, University of London, dem Online-Glücksspiel-Anbieter Kindred und BetBuddy, einer zu Playtech gehörenden Glücksspieldatenanalysefirma, entstand das auf Interviews mit Stakeholdern basierende Whitepaper mit dem Titel, "Raising Standards in Compliance: Application of artificial intelligence to online data to identify anomalous behaviours” (Erhöhung der Compliance-Standards: Nutzung künstlicher Intelligenz für Online-Daten zur Erkennung anormalen Verhaltens).

Dieses stellt die ersten Erkenntnisse eines 3-Jahres-Projekts zusammen, bei dem erforscht werden soll inwieweit künstliche Intelligenz zur Bekämpfung von Geldwäsche genutzt werden kann. Die erste Forschungsphase konzentrierte sich auf die Untersuchung von Bereichen, die verbessert werden müssen, ehe künstliche Intelligenz zum Einsatz kommen kann. Die zweite Forschungsphase wird Glücksspieldaten aus der Praxis nutzen, um Anzeichen von Geldwäsche zu erkennen.

Zum Autorenteam der Studie gehörten Charitos Charitou, Doktorand der City-Universität; Simo Dragicevic, CEO von BetBuddy, ein Unternehmen der Playtech Plc, und Betreuer der Doktoranden an der City-Universität; sowie Artur Garcez, Professor an der City-Universität und Leiter des Forschungszentrums für Maschinelles Lernen.

Das Whitepaper ist eines der Ergebnisse der 2017 zwischen der City- Universität, BetBuddy und Kindred geschlossenen Partnerschaft zur Finanzierung eines Doktorandenprojekts über einen Zeitraum von 3 Jahren, bei dem die Nutzung von Verfahren der Künstlichen Intelligenz und Tiefen Lernens zur Verbesserung von Entscheidungsprozessen zur Bekämpfung von Geldwäsche in der Online-Glücksspielbranche in Großbritannien untersucht werden soll.

Neben einer Zusammenfassung der wichtigsten Aussagen aus Gesprächen mit Experten und Stakeholdern - darunter Experten von Strafverfolgungsbehörden, Aufsichtsbehörden, Gewerkschaften, Lieferanten und Betreibern - benennt die Studie einige wesentliche Herausforderungen der Online-Glücksspielbranche und gibt wichtige technische Empfehlungen, von denen einige auf Branchenebene in Angriff genommen werden sollten und andere die Grundlage für spätere Forschungsphasen bilden werden, darunter:

>> Die Entwicklung eines grenzüberschreitenden einheitlichen Formats bzw. technischen Protokolls zur Übermittlung von Berichten Verdächtiger Transaktionen (STRs), Berichten Verdächtiger Handlungen (SARs) und Abwehr von Geldwäsche (DAML), um es Betreibern zu ermöglichen, Fälle mithilfe eines einheitlichen Systems zu melden und gleichzeitig Feedback zur Meldungsqualität geben zu können;

>>Die Fortsetzung der Bemühungen zur Entwicklung einer zentralen Datenbank mit hinsichtlich verdächtiger Glücksspielaktivitäten gekennzeichneten Kunden, um gekennzeichnete Kunden branchenweit besser überwachen zu können.

>> Bei Schwellenwertprüfungen untersuchen, ob mehr Schwellenwerte, die oberhalb der regulatorischen Anforderungen liegen und ob variable Elemente in den Prozess einbezogen werden sollten;

>> Entwicklung von ausgeklügelteren und kosteneffizienteren Methoden zur Verbesserung der kontinuierlichen Überwachung; Dies erfordert die Entwicklung von Techniken zur Analyse des Spielerverhaltens unterhalb der von Aufsichtsbehörden festgelegten Schwellenwerte, ohne dass mehr Personal zur Bildschirmbeobachtung erforderlich wird;

>> Nutzung von Daten zur Entwicklung von komplexeren Verhaltensüberprüfungen und Kundenfinanzkraft-Segmenten zur Unterstützung verbesserter Vermögens- und Geldmittelquellen-Checks (SOW/SOF-Checks) während des gesamten Kundenlebenszykus bei Kunden, die viel Geld ausgeben, und nicht nur an spezifischen Punkten wie z.B. beim Überschreiten bestimmter aufsichtsrechtlich festgelegter Limits (z.B. wenn ein Kunde innerhalb von 24 Stunden mehr als 2.000 EUR einzahlt);

>> Investition in die Modernisierung und Vereinfachung von KYC- (Know Your Customer) und SOF-Prozessen, bei gleichzeitiger Ausnutzung dessen zum Aufbau einer engeren Kundenbeziehung und stärkeren Vertrauens in die Glücksspielmarke, wobei vermieden werden woll, dass dies als administrativer oder "Check-Box" Compliance-Prozess betrachtet wird.
Professor Artur Garcez, Leiter des Forschungszentrums für Maschinelles Lernen der City-Universität erklärte hierzu:

"Wir freuen uns auf die nächste Phase der Forschungsarbeit, bei der wir echte Glücksspieldaten aus der Praxis nutzen werden. Einige der heutzutage verfügbaren Methoden zur Erkennung anomalen Verhaltens, wie z.B. neueste Recurrent Neural Networks, zeigen vielversprechende Ergebnisse bei der Analyse solch komplexer Streaming-Daten."

Simo Dragicevic, CEO von BetBuddy, fügte hinzu: "Diese Anfangsphase war wichtig, um sich von den Stakeholdern bestätigen zu lassen, in welchen Bereichen der AML-Überwachung es Verbesserungsbedarf gibt. Es ist klar, dass wenngleich die Aufgabe sehr komplex ist, die Stakeholders hohe Erwartungen an eine kontinuierliche Verbesserung und Investition in die Forschung und Entwicklung mithilfe neuer Technologien haben."

Maris Bonello, Leiter des Bereichs Player Sustainability and Integrity Analytics der Kindred Group, sagte: "Zusammenarbeit zwischen Forschung, Aufsichtsbehörden, Betreibern und anderen Partnern ist von entscheidender Bedeutung, wenn wir unsere Techniken und Tools verbessern wollen, um betrügerisches Verhalten auf den digitalen Plattformen zu bekämpfen. Wir sind überzeugt, dass Forschungsprojekte wie dieses helfen, für mehr Transparenz zu sorgen und zu einem Brückeneffekt zwischen der Arbeit der Betreiber und Wissenschaft beitragen."

Zu den Firmen und Organisationen, die am Stakeholder-Inteview Whitepaper teilgenommen haben, gehörten: die Kindred-Gruppe; die Remote Gambling Association; die Aufsichtsbehörde Malta Gaming Authority, Financial Intelligence Unit, Malta; Playtech Plc, EPIC Risk Management sowie die britische Aufsichtsbehörde UK Gambling Commission.
(City, University of London: ra)

eingetragen: 03.08.18
Newsletterlauf: 07.09.18

City, University of London: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Kostenloser Compliance-Newsletter
Ihr Compliance-Magazin.de-Newsletter hier >>>>>>



Meldungen: Studien

  • Betrug bereits im Vorfeld verhindern

    Banken und Online-Händler können ihre Fähigkeit, risikoreiche und schwer zu entdeckende betrügerische Transaktionen zu erkennen, erheblich verbessern, indem sie geteilte Betrugsinformationen in ihre Risikobewertungen einbeziehen, so die Ergebnisse des neuesten Global State of Fraud Report von LexisNexis Risk Solutions.

  • Detaillierte Einblicke in die Gehaltsstrukturen

    APSCo (Association of Professional Staffing Companies) Deutschland veröffentlicht den ersten umfassenden Gehaltscheck für die Staffing-Branche und schafft damit eine wichtige Grundlage für mehr Gehaltstransparenz. Die Ergebnisse unterstützen Staffing-Unternehmen in ihrer Vorbereitung auf die bevorstehenden Anforderungen der EU-Richtlinie zur Gehaltstransparenz, die ab 2026 verpflichtend wird.

  • Gute Bedingungen für GenAI-Anwendungen

    Ein Großteil der weltweiten KI-Investitionen fließt in den Finanzsektor. 2023 wurden in der Branche 87 Milliarden US-Dollar in KI investiert - deutlich mehr als im Gesundheitswesen (76 Milliarden) oder in der Telekommunikations- und Medienbranche (75 Milliarden).

  • 9 Prozent der Unternehmen nutzen generative KI

    Die deutsche Wirtschaft nimmt bei Künstlicher Intelligenz Fahrt auf. Erstmals beschäftigt sich mehr als die Hälfte (57 Prozent) der Unternehmen mit KI. Jedes fünfte Unternehmen (20 Prozent) nutzt bereits KI. Vor einem Jahr waren es erst 15 Prozent, 2022 nur 9 Prozent. Mehr als jedes Dritte (37 Prozent) plant oder diskutiert derzeit den KI-Einsatz, nach 28 Prozent 2023 und 25 Prozent 2022.

  • Studie zu Lieferkettengesetzen

    Für neun von zehn Unternehmen in Deutschland ist Personalmangel die größte Hürde bei der Umsetzung des Lieferkettensorgfaltspflichtengesetzes (LkSG). Das zeigt eine neue Studie der EQS Group in Zusammenarbeit mit der Hochschule für angewandte Wissenschaften Ansbach. Während Unternehmen in ihrem eigenen Geschäftsbereich nur ein geringes Risiko für LkSG-Verstöße sehen, schätzen sie dieses bei ihren mittelbaren Lieferanten deutlich höher ein.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen